Add like
Add dislike
Add to saved papers

Inhibition of DNA methyltransferase 1 increases nuclear receptor subfamily 4 group A member 1 expression and decreases blood glucose in type 2 diabetes.

Oncotarget 2016 June 29
Our previous genome-wide association studies showed that DNA methyltransferase 1 (DNMT1) is associated with increased susceptibility to type 2 diabetes (T2D) in Han Chinese individuals. Here, we aimed to further evaluate the role of DNMT1 in T2D. We performed a genome-wide DNA methylation array and found that the nuclear receptor subfamily 4 group A member 1 (NR4A1) promoter was hypermethylated in patients with T2D and in a mouse model of T2D. Moreover, DNA hypermethylation of the NR4A1 promoter reduced NR4A1 mRNA expression. Transient transfection of human NR4A1 into RIN-m5F and 293T cells caused DNMT1 inhibition and induced insulin receptor activation. NR4A1knockdown by shRNA resulted in overexpression of DNMT1 and inhibition of insulin receptor, suggesting that the NR4A1 gene is involved in the epigenetics pathway. Furthermore, T2D model mice treated with the DNMT1 inhibitor aurintricarboxylic acid (ATA) showed reduced activation of DNMT1 in pancreatic β cells; this effect reversed the changes in NR4A1 expression and decreased blood glucose in T2D model mice. Thus, our results showed for the first time that DNMT1 caused NR4A1 DNA hypermethylation and blocked insulin signaling in patients with T2D. Importantly, ATA therapy may be useful for decreasing blood glucose levels by reversing NR4A1-dependent insulin signaling. These findings improve our understanding of the crucial roles of these regulatory elements in human T2D.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app