Add like
Add dislike
Add to saved papers

Novel Aldimine-Type Schiff Bases of 4-Amino-5-[(3,4,5-trimethoxyphenyl)methyl]-1,2,4-triazole-3-thione/thiol: Docking Study, Synthesis, Biological Evaluation, and Anti-Tubulin Activity.

The present study was planned to design some novel aldimine-type Schiff bases bearing 3,4,5-trimethoxyphenyl and 1,2,4-triazole-3-thione/thiol as potential tubulin polymerization inhibitors. The obtained results of the molecular docking study using the tubulin complex (PDB code: 1SA0) showed that compounds H-25 and H-26 were well fitted in the colchicine binding site of tubulin with binding energies of -8.68 and -8.40 kcal/mol, respectively, in comparison to the main ligand (-8.20 kcal/mol). In parallel, molecular simulations were also performed on five other 3,4,5-trimethoxyphenyl-containing ligand targets including hsp90, VEGFR2, and human and microbial (Staphylococcus aureus and Candida albicans) dihydrofolate reductase, among which H-17, H-45, H-27, H-02, and H-19 were the most suitable compounds, respectively. Evaluation of the cytotoxic effect of the most efficient compounds of the docking steps (H-25) revealed IC50 values of 12.48 ± 1.10, 4.25 ± 0.22, 3.33 ± 0.31, and 9.71 ± 0.75 µM against the HT1080, HT29, MCF-7, and A549 cell lines, respectively, compared to doxorubicin (12.69 ± 1.23, 6.12 ± 0.47, 3.51 ± 0.32, and 6.40 ± 0.31 µM, respectively). The in vitro tubulin polymerization investigation launched compounds H-25 and H-26 as potent antitubulin agents due to their IC50 values of 0.17 ± 0.01 and 10.93 ± 0.43 µM, respectively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app