Evaluation Studies
Journal Article
Add like
Add dislike
Add to saved papers

Egg-shaped core/shell α-Mn2O3@α-MnO2 as heterogeneous catalysts for decomposition of phenolics in aqueous solutions.

Chemosphere 2016 September
Novel uniform ellipsoid α-Mn2O3@α-MnO2 core/shell (McMs) nanocomposites were prepared via a hydrothermal process with a shape-control protocol followed by calcination at different temperatures. The properties of the composites were characterized by a number of techniques such as thermogravimetric analysis (TGA), X-ray diffraction (XRD), N2 adsorption, and scanning electron microscopy (SEM). The core/shell materials were much effective in heterogeneous oxone(®) activation to generate sulfate and hydroxyl radicals for degradation of aqueous phenol. The McMs composites demonstrated catalytic activity for 100% phenol decomposition in short duration varying between 20 and 120 min, much higher than that of homogeneous Mn(2+) system with 95% phenol degradation in 120 min. They also showed a higher activity than single-phase α-Mn2O3 or α-MnO2. The catalytic activity of phenol degradation depends on temperature, oxone(®) concentration, phenol concentration, and catalyst loading. The catalysts also showed a stable activity in several cycles. Kinetic study demonstrated that phenol degradation reactions follow a first order reaction on McMs catalysts giving activation energies at 32.1-68.8 kJ/mol. With the detection of radicals by electron paramagnetic resonance (EPR), the generation mechanism was proposed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app