Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Transduction of interleukin-10 through renal artery attenuates vascular neointimal proliferation and infiltration of immune cells in rat renal allograft.

Immunology Letters 2016 August
Renal transplantation is the treatment of choice for end-stage renal failure. Although acute rejection is not a major issue anymore, chronic rejection, especially vascular rejection, is still a major factor that might lead to allograft dysfunction on the long term. The role of the local immune-regulating cytokine interleukin-10 (IL-10) in chronic renal allograft is unclear. Many clinical observations showed that local IL-10 level was negatively related to kidney allograft function. It is unknown this negative relationship was the result of immunostimulatory property or insufficient immunosuppression property of local IL-10. We performed ex vivo transduction before transplantation through artery of the renal allograft using adeno-associated viral vectors carrying IL-10 gene. Twelve weeks after transplantation, we found intrarenal IL-10 gene transduction significantly inhibited arterial neointimal proliferation, the number of occluded intrarenal artery, interstitial fibrosis, peritubular capillary congestion and glomerular inflammation in renal allografts compared to control allografts receiving PBS or vectors carrying YFP. IL-10 transduction increased serum IL-10 level at 4 weeks but not at 8 and 12 weeks. Renal IL-10 level increased while serum creatinine decreased significantly in IL-10 group at 12 weeks compared to PBS or YFP controls. Immunohistochemical staining showed unchanged total T cells (CD3) and B cells (CD45R/B220), decreased cytotoxic T cells (CD8), macrophages (CD68) and increased CD4+ and FoxP3+ cells in IL-10 group. In summary, intrarenal IL-10 inhibited the allograft rejection while modulated immune response.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app