Add like
Add dislike
Add to saved papers

Effects of CTR4 deletion on virulence and stress response in Cryptococcus neoformans.

Roles of the high-affinity copper transporter Ctr4 in the virulence of Cryptococcus neoformans remain to be fully determined. Here we demonstrate that Ctr4 plays a necessary role in virulence and tolerance to a number of stress conditions. We first observed, with the method of flame atomic absorption spectrometry, that deletion of CTR4 resulted in a significant decrease in intracellular copper level, confirming the role of Ctr4 as a copper transporter in C. neoformans. Furthermore, CTR4 was critical for the yeast to survive at both elevated and low temperatures, as the growth rate of the ctr4Δ mutant at 4 and 37 °C was significantly decreased. The mutant ctr4Δ also exhibited hypersensitivity to osmotic stress imposed by 2 M NaCl or KCl, indicating the possible crosstalk of Ctr4 with the HOG signalling pathway. Moreover, cell wall and plasma membrane integrity appeared to be impaired in the ctr4Δ strain. The virulence of ctr4Δ in two mouse cryptococcosis models was remarkably reduced either via an intranasal or intravenous inoculation. Our work confirms the roles of Ctr4 in virulence and copper homeostasis as well as other additional novel functions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app