Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Huntingtin-associated protein-1 is a synapsin I-binding protein regulating synaptic vesicle exocytosis and synapsin I trafficking.

Huntingtin-associated protein-1 (HAP1) is involved in intracellular trafficking, vesicle transport, and membrane receptor endocytosis. However, despite such diverse functions, the role of HAP1 in the synaptic vesicle (SV) cycle in nerve terminals remains unclear. Here, we report that HAP1 functions in SV exocytosis, controls total SV turnover and the speed of vesicle fusion in nerve terminals and regulates glutamate release in cortical brain slices. We found that HAP1 interacts with synapsin I, an abundant neuronal phosphoprotein that associates with SVs during neurotransmitter release and regulates synaptic plasticity and neuronal development. The interaction between HAP1 with synapsin I was confirmed by reciprocal co-immunoprecipitation of the endogenous proteins. Furthermore, HAP1 co-localizes with synapsin I in cortical neurons as discrete puncta. Interestingly, we find that synapsin I localization is specifically altered in Hap1(-/-) cortical neurons without an effect on the localization of other SV proteins. This effect on synapsin I localization was not because of changes in the levels of synapsin I or its phosphorylation status in Hap1(-/-) brains. Furthermore, fluorescence recovery after photobleaching in transfected neurons expressing enhanced green fluorescent protein-synapsin Ia demonstrates that loss of HAP1 protein inhibits synapsin I transport. Thus, we demonstrate that HAP1 regulates SV exocytosis and may do so through binding to synapsin I. The Proposed mechanism of synapsin I transport mediated by HAP1 in neurons. HAP1 interacts with synapsin I, regulating the trafficking of synapsin I containing vesicles and/or transport packets, possibly through its engagement of microtubule motors. The absence of HAP1 reduces synapsin I transport and neuronal exocytosis. These findings provide insights into the processes of neuronal trafficking and synaptic signaling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app