Add like
Add dislike
Add to saved papers

Hidden String Order in a Hole Superconductor with Extended Correlated Hopping.

Ultracold fermions in one-dimensional, spin-dependent nonoverlapping optical lattices are described by a nonstandard Hubbard model with next-nearest-neighbor correlated hopping. In the limit of a kinetically constraining value of the correlated hopping equal to the normal hopping, we map the invariant subspaces of the Hamiltonian exactly to free spinless fermion chains of varying lengths. As a result, the system exactly manifests spin-charge separation and we obtain the system properties for arbitrary filling: ground state collective order characterized by a spin gap, which can be ascribed to an unconventional critical hole superconductor associated with finite long range nonlocal string order. We study the system numerically away from the integrable point and show the persistence of both long range string order and spin gap for appropriate parameters as well as a transition to a ferromagnetic state.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app