Add like
Add dislike
Add to saved papers

Measurement of an Excess in the Yield of J/ψ at Very Low p_{T} in Pb-Pb Collisions at sqrt[s]_{NN}=2.76 TeV.

We report on the first measurement of an excess in the yield of J/ψ at very low transverse momentum (p_{T}<0.3  GeV/c) in peripheral hadronic Pb-Pb collisions at sqrt[s_{NN}]=2.76  TeV, performed by ALICE at the CERN LHC. Remarkably, the measured nuclear modification factor of J/ψ in the rapidity range 2.5<y<4 reaches about 7 (2) in the p_{T} range 0-0.3  GeV/c in the 70%-90% (50%-70%) centrality class. The J/ψ production cross section associated with the observed excess is obtained under the hypothesis that coherent photoproduction of J/ψ is the underlying physics mechanism. If confirmed, the observation of J/ψ coherent photoproduction in Pb-Pb collisions at impact parameters smaller than twice the nuclear radius opens new theoretical and experimental challenges and opportunities. In particular, coherent photoproduction accompanying hadronic collisions may provide insight into the dynamics of photoproduction and nuclear reactions, as well as become a novel probe of the quark-gluon plasma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app