Add like
Add dislike
Add to saved papers

The use of a novel in-bed active Leg Exercise Apparatus (LEX) for increasing venous blood flow.

OBJECTIVE: The incidence of pulmonary embolism (PE) and leg deep vein thrombosis (DVT) has increased in recent years in association with aging and an increase in the number of bedridden individuals. We developed an active in-bed leg exercise apparatus labeled the Leg Exercise Apparatus (LEX) for DVT prevention. We compared the effect of leg exercises performed using the LEX to conventional active ankle exercises on increased blood flow.

MATERIALS & METHODS: The subjects were eight healthy adult volunteers [five men and three women, aged 20-34 (mean 27.0) years]. Subjects performed two types of exercise; exercise 1 consisted of leg exercises using the LEX, while exercise 2 consisted of in-bed active plantar flexion/dorsiflexion exercises without the device. Measurements were taken 1, 5, 10, 20, and 30 minutes after exercise including common femoral vein blood flow, mean blood flow velocity, maximum blood flow velocity, and vessel diameter using Doppler ultrasound. Statistical procedures included timed measurement data analysis using a linear mixed model. A Bonferroni correction was used for multiple comparisons.

RESULTS: Compared to resting levels, blood flow reached a maximum value 1 minute after exercise for both exercise types, with a significantly greater increase after exercise 1 (1.76-fold increase) compared to exercise 2 (1.44-fold increase) (p = 0.005). There was a significant difference (p = 0.03) between the two exercises for all values from 1 minute to 30 minutes following exercise. There was no significant difference between exercises for peak or mean blood flow velocity. Compared to resting levels, blood vessel diameter reached a maximum value of 1.47-fold greater at 5 minutes post-exercise for exercise 1 and a maximum value of 1.21-fold greater at 1 minute post-exercise for exercise 2.

CONCLUSIONS: Exercise using the LEX increased lower leg venous blood flow and vessel diameter. We propose that the LEX may serve as a new DVT prevention tool.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app