Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Pterostilbene-mediated Nrf2 activation: Mechanistic insights on Keap1:Nrf2 interface.

The discovery of Keap1-Nrf2 protein-protein interaction (PPI) inhibitors has become a promising strategy to develop novel lead molecules against variety of stress. Hence, Keap1-Nrf2 system plays an important role in oxidative/electrophilic stress associated disorders. Our earlier studies identified pterostilbene (PTS), a natural analogue of resveratrol, as a potent Nrf2 activator and Keap1-Nrf2 PPI inhibitor as assessed by luciferase complementation assay. In this study, we further identified the potential of PTS in Nrf2 activation and ARE-driven downstream target genes expression by nuclear translocation experiments and ARE-luciferase reporter assay, respectively. Further, the luciferase complementation assay identified that PTS inhibits Keap1-Nrf2 PPI in both dose and time-dependent manner. Computational studies using molecular docking and dynamic simulation revealed that PTS directly interacts with the basic amino acids of kelch domain of Keap1 and perturb Keap1-Nrf2 interaction pattern. This manuscript not only shows the binding determinants of Keap1-Nrf2 proteins but also provides mechanistic insights on Nrf2 activation potential of PTS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app