Add like
Add dislike
Add to saved papers

Analysis of dysregulated long non-coding RNA expressions in glioblastoma cells.

Gene 2016 September 16
Long non coding RNAs (lncRNAs) are associated with various biological roles such as embryogenesis, stem cell biology, cellular development and present specific tissue expression profiles. Aberrant expression of lncRNAs are thought to play a critical role in the progression and development of various cancer types, including gliomas. Glioblastomas (GBM) are common and malignant primary brain tumours. Brain cancer stem cells (BCSC) are isolated from both low and high-grade tumours in adults and children, by cell fraction which express neuronal stem cell surface marker CD133. The purpose of this study was to investigate the expression profiles of lncRNAs in brain tumour cells and determine its potential biological function. For this purpose, U118MG-U87MG; GBM stem cell series were used. Human parental brain cancer cells were included as the control group; the expressions of disease related human lncRNA profiles were studied by LightCycler 480 real-time PCR. Expression profiles of 83 lncRNA genes were analyzed for a significant dysregulation, compared to the control cells. Among lncRNAs, 51 lncRNA genes down-regulated, while 8 lncRNA genes were up-regulated. PCAT-1 (-2.36), MEG3 (-5.34), HOTAIR (-2.48) lncRNAs showed low expression in glioblastoma compared to the human (parental) brain cancer stem cells, indicating their role as tumour suppressor genes on gliomas. As a result, significant changes for anti-cancer gene expressions were detected with disease-related human lncRNA array plates. Identification of novel target genes may lead to promising developments in human brain cancer treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app