Add like
Add dislike
Add to saved papers

Dexamethasone promotes long-term functional recovery of neuromuscular junction in a murine model of tourniquet-induced ischaemia-reperfusion.

Acta Physiologica 2017 Februrary
AIM: Tourniquet-induced ischaemia and subsequent reperfusion cause serious ischaemia-reperfusion (IR) injury in the neuromuscular junction (NMJ) and skeletal muscle. Here, we investigated whether dexamethasone (Dex) promotes long-term functional recovery of the NMJ and skeletal muscle in tourniquet-induced hindlimb IR.

METHODS: Unilateral hindlimb of C57/BL6 mice was subjected to 3 h of ischaemia following 6 weeks of reperfusion (6-wk IR). Dex treatment began on the day of IR induction and lasted for different periods. Sciatic nerve-stimulated gastrocnemius muscle contraction was detected in situ. Function of the NMJ was measured in situ using electrophysiological recording of the miniature endplate potential (mEPP) and endplate potential (EPP). Western blot was used to detect protein expression of nicotinic acetylcholine receptors (nAChRs) in gastrocnemius muscles.

RESULTS: Gastrocnemius muscle contraction in mice with 6-wk IR was about 60% of normal skeletal muscle contraction recorded in age-matched sham mice. The amplitude of the mEPP and EPP was lower in mice with 6-wk IR, compared to sham mice. Dex treatment for 1 or 3 days did not restore the function of the NMJ and improve gastrocnemius muscle contraction in mice with 6-wk IR. Dex treatment for 1 week exerted a maximum effect on improving the function of the NMJ and skeletal muscle, with the effect of Dex gradually lessening with prolonged Dex treatment. There are no significant differences in protein expression of nAChR-α1 and nAChR-β1 subunits in the gastrocnemius muscle among all groups.

CONCLUSION: Dex promotes repair of the NMJ and subsequently restores skeletal muscle contractile function in tourniquet-induced 6-wk IR.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app