Add like
Add dislike
Add to saved papers

P38 MAPK/miR-1 are involved in the protective effect of EGCG in high glucose-induced Cx43 downregulation in neonatal rat cardiomyocytes.

The remodeling of cardiac gap junctions contributes to various arrhythmias in a diabetic heart. We previously reported that Epigallocatechin-3-gallate (EGCG) attenuated connexin43 (Cx43) protein downregulation induced by high glucose (HG) in neonatal rat cardiomyocytes, but Cx43 mRNA expression was not affected. It indicated the possible mechanisms of post-transcriptional regulation, which still remains unclear. As microRNAs (miRNAs) regulate gene expression widely at post-transcriptional level, we measured miR-1/206 in cardiomyocytes treated with HG and EGCG by quantitative RT-PCR and investigated their relationship with signal transduction pathways. The results showed that HG induced miR-1/206 elevation by PKC MAPK pathway. Moreover, we tested the negative regulation effect of miR-1/206 on Cx43 protein by miRNAs transfection. EGCG, however, nearly abolished the HG-induced miR-1 augmentation via P38 MAPK pathway. Therefore, our study suggested that PKC-activated miR-1/206 expression might contribute to Cx43 downregulation in HG-treated cardiomyocytes, and EGCG conferred protective effect by inhibiting miR-1 elevation via P38 MAPK pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app