Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Effects of cobalt and chromium ions on lymphocyte migration.

A T cell-mediated hypersensitivity reaction has been reported in some patients with CoCrMo-based implants. However, the role of cobalt and chromium ions in this reaction remains unclear. The objective of the present study was to analyze the effects of Co2+ and Cr3+ in culture medium, as well as the effects of culture supernatants of macrophages exposed to Co2+ or Cr3+ , on the migration of lymphocytes. The release of cytokines/chemokines by macrophages exposed to Co2+ and Cr3+ was also analyzed. The migration of murine lymphocytes was quantified using the Boyden chamber assay and flow cytometry, while cytokine/chemokine release by J774A.1 macrophages was measured by ELISA. Results showed an ion concentration-dependent increase in TNF-α and MIP-1α release and a decrease in MCP-1 and RANTES release. Migration analysis showed that the presence of Co2+ (8 ppm) and Cr3+ (100 ppm) in culture medium increased the migration of T lymphocytes, while it had little or no effect on the migration of B lymphocytes, suggesting that Co2+ and Cr3+ can stimulate the migration of T but not B lymphocytes. Levels of T lymphocyte migration in culture medium containing Co2+ or Cr3+ were not statistically different from those in culture supernatants of macrophages exposed to Co2+ or Cr3+ , suggesting that the effects of the ions and chemokines were not additive, possibly because of ion interference with the chemokines and/or their cognate receptors. Overall, results suggest that Co2+ and Cr3+ are capable of stimulating the migration of T (but not B) lymphocytes in the absence of cytokines/chemokines, and could thereby contribute to the accumulation of more T than B lymphocytes in periprosthetic tissues of some patients with CoCrMo-based implants. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:916-924, 2017.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app