Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Diversification of the Homoeologous Lr34 Sequences in Polyploid Wheat Species and Their Diploid Progenitors.

Allopolyploidization induces a multiple processes of genomic reorganization, including the structurally functional diversification of the homoeologous genes. An example of such diversification is the appearance of the Lr34 gene on chromosome 7D of bread wheat T. aestivum (BAD), the gene conferring durable, race non-specific protection against three fungal pathogens. In this study, we focused on the variability of a functionally critical region between exons 10-12 of Lr34 among diploid progenitors of wheat genomes and their respective polyploids. In the diploid A-genome species, two basic forms of the studied region have been revealed: (1) non-functional forms containing stop codons, or/and frameshifts (T. monococcum/T. urartu) and (2) forms with no such a mutations (T. boeoticum). The Lr34 sequence of T. urartu containing a TGA stop codon was inherited by the first tetraploid T. dicoccoides (BA), and then reorganized in some accessions of this species due to the insertion of an LTR retroelement in exon 10. Besides T. boeoticum, the second form of the Lr34 sequence is also characteristic of A. speltoides, which presumably donated this form to all polyploid descendants bearing B-genome. No differences were found between the D-genome-specific Lr34 sequences studied here and downloaded from databases, implying the highest level of conservation of the Lr34 predecessor throughout evolution. The sequence data were later used to construct phylograms, and apparent peculiarities in the evolution of the studied region of Lr34 genes discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app