Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Simulation and Prediction of the Drug-Drug Interaction Potential of Naloxegol by Physiologically Based Pharmacokinetic Modeling.

Naloxegol, a peripherally acting μ-opioid receptor antagonist for the treatment of opioid-induced constipation, is a substrate for cytochrome P450 (CYP) 3A4/3A5 and the P-glycoprotein (P-gp) transporter. By integrating in silico, preclinical, and clinical pharmacokinetic (PK) findings, minimal and full physiologically based pharmacokinetic (PBPK) models were developed to predict the drug-drug interaction (DDI) potential for naloxegol. The models reasonably predicted the observed changes in naloxegol exposure with ketoconazole (increase of 13.1-fold predicted vs. 12.9-fold observed), diltiazem (increase of 2.8-fold predicted vs. 3.4-fold observed), rifampin (reduction of 76% predicted vs. 89% observed), and quinidine (increase of 1.2-fold predicted vs. 1.4-fold observed). The moderate CYP3A4 inducer efavirenz was predicted to reduce naloxegol exposure by ∼50%, whereas weak CYP3A inhibitors were predicted to minimally affect exposure. In summary, the PBPK models reasonably estimated interactions with various CYP3A modulators and can be used to guide dosing in clinical practice when naloxegol is coadministered with such agents.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app