Add like
Add dislike
Add to saved papers

A New Electrolytic Synthesis Method for Few-Layered MoS2 Nanosheets and Their Robust Biointerfacing with Reduced Antibodies.

We report an efficient method for the synthesis of few-layered MoS2 nanosheets and demonstrate their application in the label-free detection of the prostate-specific antigen (PSA) cancer marker. As a novel strategy, the electro-dissolution of molybdenum metal sheets in the presence of Na(+) and S(2-) ions led to the formation of Na(+) intercalated MoS2. Further exfoliation by ultrasonication yielded the desired formation of few-layered MoS2 nanosheets. After comprehensive characterization, the synthesized MoS2 nanosheets were channeled in a field-effect transistor (FET) microdevice. Chemically reduced anti-PSA antibodies were immobilized on the MoS2 channel above the FET microdevice to construct a specific PSA immunosensor. The antibodies were deliberately reduced to expose the hinge-region disulfide bonds. This approach offered a robust and site-directed immunosensing device through biointerfacing of the sulfhydryl groups (-SH) in the reduced antibody with the surface S atoms of MoS2. This device was validated as an effective immunosensor with a low detection limit (10(-5) ng/mL) over a wide linear detection range (10(-5) to 75 ng/mL).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app