Add like
Add dislike
Add to saved papers

Atmospheric dry deposition of sulfur and nitrogen in the Athabasca Oil Sands Region, Alberta, Canada.

Due to the potential ecological effects on terrestrial and aquatic ecosystems from atmospheric deposition in the Athabasca Oil Sands Region (AOSR), Alberta, Canada, this study was implemented to estimate atmospheric nitrogen (N) and sulfur (S) inputs. Passive samplers were used to measure ambient concentrations of ammonia (NH3), nitrogen dioxide (NO2), nitric acid/nitrous acid (HNO3/HONO), and sulfur dioxide (SO2) in the AOSR. Concentrations of NO2 and SO2 in winter were higher than those in summer, while seasonal differences of NH3 and HNO3/HONO showed an opposite trend, with higher values in summer. Concentrations of NH3, NO2 and SO2 were high close to the emission sources (oil sands operations and urban areas). NH3 concentrations were also elevated in the southern portion of the domain indicating possible agricultural and urban emission sources to the southwest. HNO3, an oxidation endpoint, showed wider ranges of concentrations and a larger spatial extent. Concentrations of NH3, NO2, HNO3/HONO and SO2 from passive measurements and their monthly deposition velocities calculated by a multi-layer inference model (MLM) were used to calculate dry deposition of N and S. NH3 contributed the largest fraction of deposited N across the network, ranging between 0.70-1.25kgNha(-1)yr(-1), HNO3/HONO deposition ranged between 0.30-0.90kgNha(-1)yr(-1), and NO2 deposition between 0.03-0.70kgNha(-1)yr(-1). During the modeled period, average dry deposition of the inorganic gaseous N species ranged between 1.03 and 2.85kgNha(-1)yr(-1) and SO4-S deposition ranged between 0.26 and 2.04kgha(-1)yr(-1). Comparisons with co-measured ion exchange resin throughfall data (8.51kgSha(-1)yr(-1)) indicate that modeled dry deposition combined with measured wet deposition (1.37kgSha(-1)yr(-1)) underestimated S deposition. Gas phase NH3 (71%) and HNO3 plus NO2 (79%) dry deposition fluxes dominated the total deposition of NH4-N and NO3-N, respectively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app