Add like
Add dislike
Add to saved papers

Repeated-Sprint Training in Hypoxia Induced by Voluntary Hypoventilation in Swimming.

PURPOSE: Repeated-sprint training in hypoxia (RSH) has been shown as an efficient method for improving repeated-sprint ability (RSA) in team-sport players but has not been investigated in swimming. We assessed whether RSH with arterial desaturation induced by voluntary hypoventilation at low lung volume (VHL) could improve RSA to a greater extent than the same training performed under normal breathing (NB) conditions.

METHODS: Sixteen competitive swimmers completed 6 sessions of repeated sprints (2 sets of 16 × 15 m with 30 s send-off) either with VHL (RSH-VHL, n = 8) or with NB (RSN, n = 8). Before and after training, performance was evaluated through an RSA test (25-m all-out sprints with 35 s send-off) until exhaustion.

RESULTS: From before to after training, the number of sprints was significantly increased in RSH-VHL (7.1 ± 2.1 vs 9.6 ± 2.5; P < .01) but not in RSN (8.0 ± 3.1 vs 8.7 ± 3.7; P = .38). Maximal blood lactate concentration ([La]max) was higher after than before in RSH-VHL (11.5 ± 3.9 vs 7.9 ± 3.7 mmol/L; P = .04) but was unchanged in RSN (10.2 ± 2.0 vs 9.0 ± 3.5 mmol/L; P = .34). There was a strong correlation between the increases in the number of sprints and in [La]max in RSH-VHL only (R = .93, P < .01).

CONCLUSIONS: RSH-VHL improved RSA in swimming, probably through enhanced anaerobic glycolysis. This innovative method allows inducing benefits normally associated with hypoxia during swim training in normoxia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app