Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Biomimetic Autonomous Enzymatic Nanowalker of High Fuel Efficiency.

ACS Nano 2016 June 29
Replicating efficient chemical energy utilization of biological nanomotors is one ultimate goal of nanotechnology and energy technology. Here, we report a rationally designed autonomous bipedal nanowalker made of DNA that achieves a fuel efficiency of less than two fuel molecules decomposed per productive forward step, hence breaking a general threshold for chemically powered machines invented to date. As a genuine enzymatic nanomotor without changing itself nor the track, the walker demonstrates a sustained motion on an extended double-stranded track at a speed comparable to previous burn-bridge motors. Like its biological counterparts, this artificial nanowalker realizes multiple chemomechanical gatings, especially a bias-generating product control unique to chemically powered nanomotors. This study yields rich insights into how pure physical effects facilitate harvest of chemical energy at the single-molecule level and provides a rarely available motor system for future development toward replicating the efficient, repeatable, automatic, and mechanistically sophisticated transportation seen in biomotor-based intracellular transport but beyond the capacity of the current burn-bridge motors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app