Add like
Add dislike
Add to saved papers

Mechanism of the immunostimulatory activity by a polysaccharide from Dictyophora indusiata.

Dictyophora indusiata, an edible mushroom, is widely used not only as health foods but also as traditional Chinese medicine. This study aimed to investigate the molecular mechanism involved in the immunostimulatory activity of a polysaccharide from Dictyophora indusiata (DIP) in RAW264.7 cells. Results indicated that DIP induced the up-regulation of nitric oxide (NO), interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumour necrosis factor (TNF-α) production as well as the mRNA expression levels of iNOS, IL-1β, IL-6 and TNF-α in macrophages. Furthermore, the functional blocking antibodies against TLR4 could markedly suppress DIP-mediated NO, IL-1β, IL-6 and TNF-α production. Flow cytometry and confocal laser-scanning microscopy analyses confirmed that DIP could bind specifically to target cells, and the binding could be inhibited by anti-TLR4 monoclonal antibodies. The expression of nuclear factor kappa B (NF-κB) p65 was significantly induced by DIP. Therefore, the DIP-induced macrophage activation may be mediated via the TLR4/NF-κB signalling pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app