Add like
Add dislike
Add to saved papers

Radiation Dose to the Breast by 64-slice CT: Effects of Scanner Model and Study Protocol.

Academic Radiology 2016 August
RATIONALE AND OBJECTIVES: This work aimed to study the effects of scanner model and study protocol on radiation dose received by breast tissues from 64-slice computed tomography (CT) studies.

MATERIALS AND METHODS: Four scanner models and three study protocols were used in scanning an anthropomorphic phantom with breast modules. Each protocol follows recommendations or guidelines from the American Association of Physicists in Medicine and the American College of Radiology. Twenty thermoluminescent dosimeters were placed inside the breast modules to measure breast tissue doses. Both the absolute and the normalized breast tissue doses were analyzed.

RESULTS: The mean glandular doses of a lung cancer screening CT, a chest/abdomen/pelvis CT, and a virtual colonoscopy CT are equivalent to less than 1, 5-7, and 1-3 two-view digital mammograms, respectively, for a standard-sized patient. The normalized breast dose differs significantly (P < 0.01) between lung cancer screening CT and chest/abdomen/pelvis CT; however, it shows less than ±10% variation among scanner models for the same protocol. In virtual colonoscopy CT, breast tissue dose decreases with the distance between local tissues to the edge of the x-ray field, although the decreasing trend varies for different scanner models and protocol settings.

CONCLUSIONS: When breasts are entirely included in the primary x-ray field, breast dose by 64-slice CT is mainly protocol dependent, with the normalized breast dose about 15% lower for protocols with modulated mA than for those with constant mA; when breasts are only partially included in the primary beam field, breast dose by 64-slice CT is dependent on both the scanner model and the protocol settings.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app