Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Generation of digoxigenin-incorporated probes to enhance DNA detection sensitivity.

Telomere length in humans has been correlated with cancer and age-related diseases. The standard method to measure telomere length relies on Southern blot analysis with radioactively or non-radioactively labeled probes containing several telomeric DNA repeats. However, this approach requires relatively large amounts of genomic DNA, making it difficult to measure telomere length when a limited amount of sample is available. Here, we describe a non-radioactive labeling method that uses 3' fill-in combined with lambda exonuclease digestion to incorporate one or more digoxigenin (DIG) molecules into bridged nucleic acid (BNA)-containing oligonucleotides (ONTs). Using our method, we were able to generate probes to detect both C- and G-rich telomeric DNA strands. Compared with commercially available DIG-labeled telomere probes, probes generated using this new approach significantly enhance the sensitivity of telomere length measurements.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app