Add like
Add dislike
Add to saved papers

Effects of microbial xylanase on digestibility of dry matter, organic matter, neutral detergent fiber, and energy and the concentrations of digestible and metabolizable energy in rice coproducts fed to weanling pigs.

The objective of this experiment was to test the hypothesis that the apparent total tract digestibility (ATTD) of DM, OM, fiber, and GE by weanling pigs and the concentration of DE and ME in full-fat rice bran (FFRB), defatted rice bran (DFRB), brown rice, and broken rice is improved if microbial xylanase is added to the diet. Eighty pigs (13.6 ± 0.8 kg initial BW) were allotted to 10 diets with 8 replicate pigs per diet in a randomized complete block design with 2 blocks of 40 pigs. A basal diet based on corn and soybean meal and 4 diets containing corn, soybean meal, and each of the 4 rice coproducts were formulated. The rice coproducts and corn and soybean meal were the only sources of energy in the diets. Five additional diets that were similar to the initial 5 diets with the exception that they also contained 16,000 units of xylanase (Econase XT-25; AB Vista, Marlborough, UK) were also formulated. All diets also contained 1,500 units of microbial phytase (Quantum Blue 5G; AB Vista). The DE and ME and the ATTD of DM, OM, fiber, and GE in diets and ingredients were calculated using the direct method and the difference method, respectively. Results indicated that the concentrations of DE and ME (DM basis) in FFRB and DFRB increased ( < 0.05) if xylanase was used. Broken rice had a greater ( < 0.05) concentration of DE and ME than FFRB and DFRB if no xylanase was added to the diets, but if xylanase was used, no differences in ME among FFRB, brown rice, and broken rice were observed. The ATTD of DM was greater ( < 0.05) in ingredients with xylanase than in ingredients without xylanase and there was a tendency ( = 0.067) for the ATTD of OM to be greater if xylanase was used. The ATTD of NDF in FFRB was greater ( < 0.05) when xylanase was added than if no xylanase was used, whereas the ATTD of NDF in DFRB was not affected by the addition of xylanase. In conclusion, if no xylanase was used, broken rice and brown rice have greater concentrations of DE and ME than FFRB and DFRB, and these values were not increased by microbial xylanase. However, xylanase increased the concentration of DE and ME (DM basis) in FFRB and DFRB.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app