Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

L-DOPA treatment in MPTP-mouse model of Parkinson's disease potentiates homocysteine accumulation in substantia nigra.

Neuroscience Letters 2016 August 16
One of the intermediates of methionine cycle, the homocysteine (Hcy), elevates in plasma of Parkinson's disease (PD) patients undergoing L-DOPA (3,4-dihydroxyphenylalanine) therapy and has been regarded as a risk factor of the disease. Several evidences pointed out that Hcy causes degeneration of dopaminergic neurons. In rodent, elevated level of Hcy in brain or infusion of the same directly into the substantia nigra (SN) potentiates dopaminergic neurodegeneration. However, the influence of L-DOPA therapy on the levels of Hcy in dopamine-rich regions of the brain (striatum and SN) of experimental models of PD is not known. The present study, for the first time, tested the hypothesis that L-DOPA treatment in experimental mouse model of PD potentiates Hcy accumulation in the dopamine-rich regions of the brain. We found a significant elevation of Hcy level in nigrostriatum in naïve as well as parkinsonian mice as a result of chronic L-DOPA treatment. Interestingly, L-DOPA treatment significantly elevates Hcy level in nigra but not in striatum of parkinsonian mice, when compared with L-DOPA naïve group. However, there is no significant decrease in the number of dopaminergic neurons in SN region in the parkinsonian mice given L-DOPA treatment. Thus, the present study demonstrates that L-DOPA treatment potentiates the level of Hcy in the SN without causing aggravated neurodegeneration in parkinsonian mice model.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app