JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Size-Dependent Cellular Uptake of Trans-Activator of Transcription Functionalized Nanoparticles.

We investigated the cellular uptake efficiencies of differently-sized silica nanoparticles in the presence and the absence of trans-activator of transcription (TAT) peptide. Silica nanoparticles incorporating fluorescent dye molecules with diameters of 30 to 800 nm were synthesized, and the surfaces of the silica nanoparticles were functionalized with TAT peptides or 3-aminopropyltriethoxysilane (APTES). Confocal microscopy and flow cytometry were used to determine the cellular locations and the uptake efficiencies of positively-charged silica nanoparticles (APTES- and TAT-) of various sizes from 30 to 800 nm. The cellular uptake efficiencies of all the differently-sized particles were significantly increased in the presence of TAT peptides. On the basis of an efficient TAT-mediated delivery system, we were able to show that TAT peptides could be used as effective cellular-uptake reagents, particularly for large particles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app