Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Microglia retard dengue virus-induced acute viral encephalitis.

Scientific Reports 2016 June 10
Patients with dengue virus (DENV) infection may also present acute viral encephalitis through an unknown mechanism. Here, we report that encephalitic DENV-infected mice exhibited progressive hunchback posture, limbic seizures, limbic weakness, paralysis, and lethality 7 days post-infection. These symptoms were accompanied by CNS inflammation, neurotoxicity, and blood-brain barrier destruction. Microglial cells surrounding the blood vessels and injured hippocampus regions were activated by DENV infection. Pharmacologically depleting microglia unexpectedly increased viral replication, neuropathy, and mortality in DENV-infected mice. In microglia-depleted mice, the DENV infection-mediated expression of antiviral cytokines and the infiltration of CD8-positive cytotoxic T lymphocytes (CTLs) was abolished. DENV infection prompted the antigen-presenting cell-like differentiation of microglia, which in turn stimulated CTL proliferation and activation. These results suggest that microglial cells play a key role in facilitating antiviral immune responses against DENV infection and acute viral encephalitis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app