JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A new approach to analyze the dynamic strength of eggs.

The mechanical behavior of eggshell was determined in terms of average rupture force and corresponding deformation. For the experiment, we selected goose eggs (Anser anser f. domestica). Samples of eggs were compressed along their x-axis and z-axis. The effect of the loading orientation can be described in terms of the eggshell contour curvature. Two different experimental methods were used: compression between two plates (loading rates up to 5 mm/s) and the Hopkinson split pressure bar technique. This second method enables achieving loading rates up to about 17 m/s. The response of goose eggs to this high loading rate was characterized also by simultaneous measurement of the eggshell surface displacements using a laser vibrometer and by the measurement of both circumferential and meridian strains.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app