JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Nanoassemblies constructed from bimodal mesoporous silica nanoparticles and surface-coated multilayer pH-responsive polymer for controlled delivery of ibuprofen.

The pH-sensitive poly(D-A) grafted amine-functionalized bimodal mesoporous silica (D-A/BMMs) was prepared by a facile method used as a drug delivery vehicle. They exhibited superior properties such as good dispersion in aqueous medium, high drug loading efficiency, improved stability and high drug release rates. Meanwhile, its structural features and performances in a controlled delivery of ibuprofen (IBU) were systematically investigated by using XRD, N2 adsorption and desorption, SEM, TEM, FT-IR, elemental analysis and TG techniques. The results demonstrated that the obtained nanocomposite presented a flexible control over drug release by controlling the grafting amount of D-A onto the mesopores surface of aminated BMMs. The cumulative percent release of IBU from D-A/BMMs was found to be much higher at pH 7.4 than at pH 2.0. The release rate was very slow in an acidic medium but became faster in a neutral medium, owing to hydrogen bonding in an acidic medium and electrostatic repulsion between negatively charged carboxyl groups in an alkaline medium.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app