Evaluation Studies
Journal Article
Add like
Add dislike
Add to saved papers

Development of an ultra-high sensitive immunoassay with plasma biomarker for differentiating Parkinson disease dementia from Parkinson disease using antibody functionalized magnetic nanoparticles.

BACKGROUND: It is difficult to discriminate healthy subjects and patients with Parkinson disease (PD) or Parkinson disease dementia (PDD) by assaying plasma α-synuclein because the concentrations of circulating α-synuclein in the blood are almost the same as the low-detection limit using current immunoassays, such as enzyme-linked immunosorbent assay. In this work, an ultra-sensitive immunoassay utilizing immunomagnetic reduction (IMR) is developed. The reagent for IMR consists of magnetic nanoparticles functionalized with antibodies against α-synuclein and dispersed in pH-7.2 phosphate-buffered saline. A high-Tc superconducting-quantum-interference-device (SQUID) alternative-current magnetosusceptometer is used to measure the IMR signal of the reagent due to the association between magnetic nanoparticles and α-synuclein molecules.

RESULTS: According to the experimental α-synuclein concentration dependent IMR signal, the low-detection limit is 0.3 fg/ml and the dynamic range is 310 pg/ml. The preliminary results show the plasma α-synuclein for PD patients distributes from 6 to 30 fg/ml. For PDD patients, the concentration of plasma α-synuclein varies from 0.1 to 100 pg/ml. Whereas the concentration of plasma α-synuclein for healthy subjects is significantly lower than that of PD patients.

CONCLUSIONS: The ultra-sensitive IMR by utilizing antibody-functionalized magnetic nanoparticles and high-Tc SQUID magnetometer is promising as a method to assay plasma α-synuclein, which is a potential biomarker for discriminating patients with PD or PDD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app