Add like
Add dislike
Add to saved papers

Optimization of pancreatic lipase inhibitory and antioxidant activities of Ilex paraguariensis by using response surface methodology.

Response surface methodology (RSM) using a Box-Behnken design was used to optimize the extraction conditions for obtaining pancreatic lipase inhibitory and antioxidant principles from Ilex paraguariensis leaves. Three influencing factors: extraction time (min), the liquid-solid ratio, and ethanol concentration (%, v/v) were investigated in the ultrasonic extraction process. Optimization of the extraction conditions to obtain a product with minimum PL activity, maximum antioxidant activity, and maximum yield was performed using RSM by focusing on the three target influencing factors. The optimum conditions were established as the ethanol concentration (54.8 %), liquid-solid ratio (35.4), and extraction time (70.0 min). Under these conditions, the 2,2-diphenyl-1-picrylhydrazyl scavenging activity, PL activity, extraction yield were 59.3 ± 3.5, 35.3 ± 3.0, and 34.4 ± 0.4 %, respectively, similar to the theoretical predicted values of 59.7, 35.2, and 34.3 %, respectively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app