Add like
Add dislike
Add to saved papers

Toward a W4-F12 approach: Can explicitly correlated and orbital-based ab initio CCSD(T) limits be reconciled?

In the context of high-accuracy computational thermochemistry, the valence coupled cluster with all singles and doubles (CCSD) correlation component of molecular atomization energies presents the most severe basis set convergence problem, followed by the (T) component. In the present paper, we make a detailed comparison, for an expanded version of the W4-11 thermochemistry benchmark, between, on the one hand, orbital-based CCSD/AV{5,6}Z + d and CCSD/ACV{5,6}Z extrapolation, and on the other hand CCSD-F12b calculations with cc-pVQZ-F12 and cc-pV5Z-F12 basis sets. This latter basis set, now available for H-He, B-Ne, and Al-Ar, is shown to be very close to the basis set limit. Apparent differences (which can reach 0.35 kcal/mol for systems like CCl4) between orbital-based and CCSD-F12b basis set limits disappear if basis sets with additional radial flexibility, such as ACV{5,6}Z, are used for the orbital calculation. Counterpoise calculations reveal that, while total atomization energies with V5Z-F12 basis sets are nearly free of BSSE, orbital calculations have significant BSSE even with AV(6 + d)Z basis sets, leading to non-negligible differences between raw and counterpoise-corrected extrapolated limits. This latter problem is greatly reduced by switching to ACV{5,6}Z core-valence basis sets, or simply adding an additional zeta to just the valence orbitals. Previous reports that all-electron approaches like HEAT (high-accuracy extrapolated ab-initio thermochemistry) lead to different CCSD(T) limits than "valence limit + CV correction" approaches like Feller-Peterson-Dixon and Weizmann-4 (W4) theory can be rationalized in terms of the greater radial flexibility of core-valence basis sets. For (T) corrections, conventional CCSD(T)/AV{Q,5}Z + d calculations are found to be superior to scaled or extrapolated CCSD(T)-F12b calculations of similar cost. For a W4-F12 protocol, we recommend obtaining the Hartree-Fock and valence CCSD components from CCSD-F12b/cc-pV{Q,5}Z-F12 calculations, but the (T) component from conventional CCSD(T)/aug'-cc-pV{Q,5}Z + d calculations using Schwenke's extrapolation; post-CCSD(T), core-valence, and relativistic corrections are to be obtained as in the original W4 theory. W4-F12 is found to agree slightly better than W4 with ATcT (active thermochemical tables) data, at a substantial saving in computation time and especially I/O overhead. A W4-F12 calculation on benzene is presented as a proof of concept.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app