Add like
Add dislike
Add to saved papers

Minichromosome maintenance protein 7 regulates phagocytosis in kuruma shrimp Marsupenaeus japonicas against white spot syndrome virus.

Minichromosome maintenance protein (MCM7) belongs to the MCM protein family and participates in the MCM complex by playing a role in the cell replication cycle and chromosome initiation of eukaryotes. Previously, we found that several genes, including MCM7, were over-expressed in Drosophila melanogaster after white spot syndrome virus (WSSV) infection. In this study, we aimed to further research the MCM7 of kuruma shrimp, Marsupenaeus japonicus (mjMCM7) and determine its role in the innate immune system. To this end, we cloned the entire 2307-bp mjMCM7 sequence, including a 1974-bp open reading frame (ORF) encoding a 658-aa-long protein. Real-time PCR showed that the gene was primarily expressed in the hemolymph and hepatopancreas and over-expressed in shrimp challenged with WSSV. Gene function study was carried out by knocking down the expression of MCM7 using small interference RNA (siRNA). The results revealed that β-actin, hemocyanin, prophenoloxidase (proPO) and tumor necrosis factor-α (TNF-α) were up-regulated while the cytoskeleton proteins such as myosin and Rho were significantly down-regulated at 24 h after treatment. The results indicate a possible relationship between mjMCM7 and the innate immune system, and suggest that mjMCM7 may play a role in phagocytosis. After WSSV challenge, WSSV copies and mortality count were both higher in the MCM7-siRNA-treated groups at 60 h after treatment, and the mortality count approached that of the control groups over time. The phagocytosis rate was significantly lower in the MCM7-siRNA-treated group than in the WSSV group. The findings of this study confirm that mjMCM7 positively regulates phagocytosis and plays an important role against WSSV. These results could help researchers to further understand the function of the MCM7 protein and reveal its potential role in the innate immunity of invertebrates.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app