Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Determination of the Preassembled Nucleating Units That Are Critical for the Crystal Growth of the Metal-Organic Framework CdIF-4.

Angewandte Chemie 2016 July 26
Identifying the form and role of the chemical species that traverse the stages of crystallization is critical to understanding the formation process of coordination polymers. Herein, we report the combined use of in situ atomic force microscopy and mass spectrometry to identify preformed, complex, cadmium 2-ethylimidazole containing solution species in the growth solution of the cadmium 2-ethylimidazolate metal-organic framework CdIF-4, and show that they are critical in the surface nucleation for the crystal growth of this material. Surface nucleation appears to be instigated by these [Cdx (CH3 CO2 )y (C5 H7 N2 /C5 H8 N2 )z ]-containing solution species and not by sole addition of the ligand molecules. The CH3 CO2 (-) or Cd(CH3 CO2 )2 groups of the former are substituted subsequently as the framework growth proceeds. Our greater understanding of such solution species and their role in crystallization will guide future syntheses of designed functional coordination polymers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app