JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Sources and implications of NADH/NAD(+) redox imbalance in diabetes and its complications.

NAD(+) is a fundamental molecule in metabolism and redox signaling. In diabetes and its complications, the balance between NADH and NAD(+) can be severely perturbed. On one hand, NADH is overproduced due to influx of hyperglycemia to the glycolytic and Krebs cycle pathways and activation of the polyol pathway. On the other hand, NAD(+) can be diminished or depleted by overactivation of poly ADP ribose polymerase that uses NAD(+) as its substrate. Moreover, sirtuins, another class of enzymes that also use NAD(+) as their substrate for catalyzing protein deacetylation reactions, can also affect cellular content of NAD(+). Impairment of NAD(+) regeneration enzymes such as lactate dehydrogenase in erythrocytes and complex I in mitochondria can also contribute to NADH accumulation and NAD(+) deficiency. The consequence of NADH/NAD(+) redox imbalance is initially reductive stress that eventually leads to oxidative stress and oxidative damage to macromolecules, including DNA, lipids, and proteins. Accordingly, redox imbalance-triggered oxidative damage has been thought to be a major factor contributing to the development of diabetes and its complications. Future studies on restoring NADH/NAD(+) redox balance could provide further insights into design of novel antidiabetic strategies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app