Add like
Add dislike
Add to saved papers

A biphasic calcium phosphate coating for potential drug delivery affects early osseointegration of titanium implants.

BACKGROUND: Calcium phosphate (CaP) surface coatings may accelerate osseointegration and serve as a drug delivery system for mineral-binding biomolecules. In a pilot study, the impact of a commercially available, thin CaP coating on early osseous bone remodeling was compared with a modern, subtractive-treated rough surface (SLA-like) in an animal trial.

METHODS: In 16 rabbits, 32 endosseous implants (CaP; n = 16, SLA-like; n = 16) were bilaterally inserted in the proximal tibia after randomization. After 2 and 4 weeks, bone-implant contact (BIC;%) in the cortical (cBIC) and the trabecular bone (sBIC) as well as volume of bone within the screw thread with the highest amount of new-formed bone (area;%) were analyzed.

RESULTS: After 2 weeks, cBIC was significantly higher for CaP when compared with SLA-like (58 ± 7% versus 40.4 ± 18%; P = 0.021). sBIC for CaP was 14.7 ± 8% and for SLA-like 7.2 ± 7.8% (P = 0.081). For area, the mean volumes were 82.8 ± 10.8% for CaP and 73.6 ± 22% for SLA-like (P = 0.311). After 4 weeks, cBIC was 42.9 ± 13% for the CaP and 46.5 ± 29.1% for the SLA-like group (P = 0.775). An sBIC of 6.9 ± 9.3% was calculated for CaP and of 12.3 ± 4.8% for SLA-like (P = 0.202). The values for area were 62.3 ± 24.1% for CaP and 50.1 ± 25.9% for SLA-like (P = 0.379).

CONCLUSIONS: The CaP coating has putative additional advantages in the early osseoconduction phases. It seems suitable for a feasible and clinical applicable bioactivation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app