Journal Article
Review
Add like
Add dislike
Add to saved papers

Chloramphenicol Derivatives as Antibacterial and Anticancer Agents: Historic Problems and Current Solutions.

Antibiotics 2016 June 4
Chloramphenicol (CAM) is the D-threo isomer of a small molecule, consisting of a p-nitrobenzene ring connected to a dichloroacetyl tail through a 2-amino-1,3-propanediol moiety. CAM displays a broad-spectrum bacteriostatic activity by specifically inhibiting the bacterial protein synthesis. In certain but important cases, it also exhibits bactericidal activity, namely against the three most common causes of meningitis, Haemophilus influenzae, Streptococcus pneumoniae and Neisseria meningitidis. Resistance to CAM has been frequently reported and ascribed to a variety of mechanisms. However, the most important concerns that limit its clinical utility relate to side effects such as neurotoxicity and hematologic disorders. In this review, we present previous and current efforts to synthesize CAM derivatives with improved pharmacological properties. In addition, we highlight potentially broader roles of these derivatives in investigating the plasticity of the ribosomal catalytic center, the main target of CAM.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app