JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Impacts of compound properties and sediment characteristics on the sorption behaviour of pharmaceuticals in aquatic systems.

Sorption is a key factor in determining the persistence, attenuation and bioavailability of sediment-associated contaminants. However, our understanding of the sorption behaviour of pharmaceuticals in sediments is poor. In this study, we investigated the sorption behaviour of a diverse set of pharmaceuticals in a range sediment types. Sorption affinity of pharmaceuticals for all sediments was found to increase in the order mefenamic acid<cimetidine<atenolol<amitriptyline<diltiazem. Comparison of the experimental observations with predictions from an existing model for estimating sorption revealed the model worked poorly for the study pharmaceuticals. Multiple linear regression analysis was therefore used to develop new models for estimating sorption of individual pharmaceuticals based on sediment properties. The analyses indicated that sorption is related to properties such as Log Dow of a compound in the sediment (lipophilicity corrected for the sediment pH), cation exchange capacity, clay%, organic carbon content and exchangeable Ca(2+), although, with the exception of atenolol, robust relationships between sediment properties and sorption were not obtained. Overall, the results demonstrate how complex the processes are that drive the sorption of pharmaceuticals in sediments and highlight the need for generation of further experimental data and further model development work.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app