Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Endogenous human skin equivalent promotes in vitro morphogenesis of follicle-like structures.

Biomaterials 2016 September
Three-dimensional constructs formed by cells embedded in an exogenous scaffold could not represent a faithful in vitro replica of native and functional tissues. In this work we produced an endogenous human skin equivalent by means of a tissue engineering process that induces the full morphogenesis of functional dermal and epidermal compartments. In such an organotypic context we demonstrated that -by using adult human skin cells-it is possible to generate follicle-like structures in vitro resembling what occurs in vivo in the fetal skin. Immunotypization evidences an inward-oriented differentiation of the follicular-like structures through immunopositivity for epithelial stem cell markers such as p63 and K19. Moreover we detected the presence of versican within the intricate network of the dermal compartment, suggesting its role as an inductive factor for the morphogenesis of appendage-like structures. These results support the importance of the repository and regulatory role of the endogenous extra cellular matrix in guiding tissue morphogenesis. The microenvironment provided by the endogenous human skin equivalent preserves p63 and K19 positive cells and could finally be involved in: (i) triggering the arrangement of the keratinocytes in follicle-like structures; (ii) promoting the convolute profile of the derma-epidermal junction and (iii) improving epidermis barrier function. We argue that the nature of dermal compartment plays a role in directing epithelial cell fate and function in vitro.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app