Add like
Add dislike
Add to saved papers

[The Experiment Study and Mechanism of Aspirin Enhances Cellular Sensitivity of Hepatocellular Carcinoma Cell Line to Arsenic Trioxide].

OBJECTIVE: To explore whether aspirin could sensitize arsenic trioxide on human hepatocelluar carcinoma cell line and understanding the combination mechanisms underlying co-treatment.

METHODS: Cell viability was detected by MTT assay, cell apoptosis rate and reactive oxygen species (ROS) level were measured by flow cytometry, and Western blot assay was used to estimated the protein expression of heme oxygenase-1 (HO-1) in total protein and NF-E2-related factor 2 (Nrf2) in nuclear protein.

RESULTS: 10 μmol/L arsenic trioxide can decreased the cell viability, while cell apoptosis rate, ROS level, HO-1 and Nrf2 protein expression was increased (P < 0.05). When compared with arsenic trioxide alone, co-treatment of arsenic trioxide with aspirin in different concentration (0, 0.1, 1.0, 2.5, 5.0 mmol/L) exhibited dual effects in intracellular ROS level, HO-1 and Nrf2 expression. Specifically, with the increasing of aspirin concentrations, the level of ROS induced by arsenic trioxide showed a rising trend after the first reduction, whereas, HO-1 and Nrf2 protein expression were decreased at first and then increased.

CONCLUSION: Low concentration, less than 2.5 mmol/L, of aspirin may reduce the ROS accumulation through activating of Nrf2-HO-1 pathway, therefore decreasing the apoptotic cell death induced by arsenic trioxide. On the contrary, 5 mmol/L aspirin could increase the sensitivity of HepG2 to arsenic trioxide through enhancing the arsenic trioxide-induced apoptosis by ROS accumulation resulting in inhibiting the Nrf2-HO-1 pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app