Add like
Add dislike
Add to saved papers

Interaction of DNA demethylase and histone methyltransferase upregulates Nrf2 in 5-fluorouracil-resistant colon cancer cells.

Oncotarget 2016 June 29
We recently reported that DNA demethylase ten-eleven translocation 1 (TET1) upregulates nuclear factor erythroid 2-related factor 2 (Nrf2) in 5-fluorouracil-resistant colon cancer cells (SNUC5/5-FUR). In the present study, we examined the effect of histone modifications on Nrf2 transcriptional activation. Histone deacetylase (HDAC) and histone acetyltransferase (HAT) were respectively decreased and increased in SNUC5/5-FUR cells as compared to non-resistant parent cells. Mixed-lineage leukemia (MLL), a histone methyltransferase, was upregulated, leading to increased trimethylation of histone H3 lysine 4, while G9a was downregulated, leading to decreased dimethylation of histone H3 lysine 9. siRNA-mediated MLL knockdown decreased levels of Nrf2 and HO-1 to a greater extent than did silencing HAT1. Host cell factor 1 (HCF1) was upregulated in SNUC5/5-FUR cells, and we observed interaction between HCF1 and MLL. Upregulation of O-GlcNAc transferase (OGT), an activator of HCF1, was also associated with HCF1-MLL interaction. In SNUC5/5-FUR cells, a larger fraction of OGT was bound to TET1, which recruits OGT to the Nrf2 promoter region, than in SNUC5 cells. These findings indicate that SNUC5/5-FUR cells are under oxidative stress, which induces expression of histone methylation-related proteins as well as DNA demethylase, leading to upregulation of Nrf2 and 5-FU resistance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app