Add like
Add dislike
Add to saved papers

Soluble antigen derived from IV larva of Angiostrongylus cantonensis promotes chitinase-like protein 3 (Chil3) expression induced by interleukin-13.

Angiostrongyliasis caused by Angiostrongylus cantonensis (A. cantonensis) is an emerging food-borne parasitic disease, which refers basically to eosinophilic meningitis. Chitinase-like protein 3 (Chil3), a member of chitinase-like protein family which has chemotactic activity for eosinophils, is reported to be highly upregulated in brain of mouse infected with A. cantonensis. The mechanisms of high expression of Chil3 and the association between A. cantonensis and Chil3 are rarely reported. In order to understand the mechanism of high expression of Chil3 in A. cantonensis-infected mouse, we measured the level of Chil3 in RAW 264.7 and BV2 cell lines stimulated with soluble antigen of A. cantonensis by qPCR and ELISA. To explore the role of Chil3 in inflammation caused by A. cantonensis, we extracted and cultured brain mononuclear cells (BMNCs) and detected the eosinophil chemotactic activity of Chil3 using transwell assay and flow cytometer. Furthermore, we treated the infected mice by injection with rmChil3 and then counted the number of larvae in brains of infected mice and treated mice to examine the association between the worm and Chil3. Our results showed the soluble antigen from A. cantonensis could promote the Chil3 expression in macrophage and microglial cell lines induced by interleukin-13. In conclusion, we supposed that high expression of Chil3 enhanced by soluble antigens from A. cantonensis might be the reason of serious eosinophil infiltration in mouse brain after A. cantonensis infection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app