Add like
Add dislike
Add to saved papers

Sevoflurane anesthetic preconditioning protects the lung endothelial glycocalyx from ischemia reperfusion injury in an experimental lung autotransplant model.

PURPOSE: The glycocalyx is a glycoprotein-polysaccaride layer covering the endothelium luminal surface, and plays a key regulatory role in several endothelial functions. Lung ischemia reperfusion (IR) is a clinical entity that occurs in everyday thoracic surgery and causes glycocalix destruction and a florid local and systemic immune response. Moreover, sevoflurane is able to modulate the inflammatory response triggered by IR lung injury. In this study, we evaluated the protective effects of sevoflurane on the pulmonary endothelial glycocalyx in an in-vivo lung autotransplant model in pigs.

METHODS: Sixteen Large White pigs underwent pneumonectomy plus lung autotransplant. They were divided into two groups depending on the hypnotic agent received (propofol or anesthetic preconditioning with sevoflurane). Glycocalyx components (syndecan-1 and heparan sulphate), cathepsin B, chemokines (MCP-1, MIP-1, and MIP-2) and adhesion molecules (VCAM and ICAM-1) were measured at four different timepoints using porcine-specific enzyme-linked immunosorbent assay (ELISA) kits.

RESULTS: There were no differences between groups in weight or in surgical and one-lung ventilation time. Greater glycocalyx destruction and higher chemokine and adhesion molecule expression were observed in the group that did not receive sevoflurane. Heparan sulphate and serum syndecan levels were higher in the propofol group (P < 0.0001) after reperfusion, as was cathepsin B activity (P < 0.015). MCP-1, MIP-1, MIP-2, VCAM, and ICAM-1 levels were also higher in the propofol group (P < 0.006).

CONCLUSION: Sevoflurane preconditioning protects pulmonary glycocalyx and reduces expression of leukocyte chemokines in an in-vivo model of pulmonary IR.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app