JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Morphology, Biochemistry, and Pathophysiology of MENX-Related Pheochromocytoma Recapitulate the Clinical Features.

Endocrinology 2016 August
Pheochromocytomas (PCCs) are tumors arising from neural crest-derived chromaffin cells. There are currently few animal models of PCC that recapitulate the key features of human tumors. Because such models may be useful for investigations of molecular pathomechanisms and development of novel therapeutic interventions, we characterized a spontaneous animal model (multiple endocrine neoplasia [MENX] rats) that develops endogenous PCCs with complete penetrance. Urine was longitudinally collected from wild-type (wt) and MENX-affected (mutant) rats and outputs of catecholamines and their O-methylated metabolites determined by mass spectrometry. Adrenal catecholamine contents, cellular ultrastructure, and expression of phenylethanolamine N-methyltransferase, which converts norepinephrine to epinephrine, were also determined in wt and mutant rats. Blood pressure was longitudinally measured and end-organ pathology assessed. Compared with wt rats, mutant animals showed age-dependent increases in urinary outputs of norepinephrine (P = .0079) and normetanephrine (P = .0014) that correlated in time with development of tumor nodules, increases in blood pressure, and development of hypertension-related end-organ pathology. Development of tumor nodules, which lacked expression of N-methyltransferase, occurred on a background of adrenal medullary morphological and biochemical changes occurring as early as 1 month of age and involving increased adrenal medullary concentrations of dense cored vesicles, tissue contents of both norepinephrine and epinephrine, and urinary outputs of metanephrine, the metabolite of epinephrine. Taken together, MENX-affected rats share several biochemical and pathophysiological features with PCC patients. This model thus provides a suitable platform to study the pathogenesis of PCC for preclinical translational studies aimed at the development of novel therapies for aggressive forms of human tumors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app