Add like
Add dislike
Add to saved papers

Kinetic, isotherm and thermodynamic studies on biosorption of chromium(VI) by using activated carbon from leaves of Ficus nitida.

BACKGROUND: Kinetics, thermodynamics and equilibrium of the removal of chromium(VI) ions from aqueous solutions by using chemically activated leaves of Ficus nitida were investigated. Adsorption runs were performed as a function of pH, mass of biosorbent, contact time, initial concentration of chromium(VI) ions and temperature.

RESULTS: The optimum conditions for maximum removal of chromium(VI) ion from aqueous solutions (about 99 %) were found to be 0.80 g of chemically activated leaves of F. nitida, 25 min, 50.0 mg/L of initial concentration of chromium(VI). Values of thermodynamic activation parameters proved that the biosorption process is spontaneous and endothermic. Results were analyzed by using Langmuir, Freundlich and Temkin models.

CONCLUSIONS: Results of the study showed that the chemically activated leaves of F. nitida can be used as low cost, ecofriendly and effective sorbent for the removal of chromium(VI) from aqueous solutions.Graphical abstractFicus nitida is an efficient bio-sorbent used for removal of Cr(VI) ion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app