Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Ontogenetic Allometry in Shape and Flexibility Underlies Life History Patterns of Labrid Cleaning Behavior.

Body shape plays a crucial role in the movement of organisms. In the aquatic environment, the shape of the body, fins, and the underlying axial skeleton reflect the ability of organisms to propel and maneuver through water. Ontogenetic changes in body shape and flexibility of the axial skeleton may coincide with shifts in ecology (e.g., changes in habitat or feeding mode). We use the evolution of cleaning behavior in the Labridae (wrasses and parrotfishes) as a case study. Cleaner fishes are species that remove and consume ectoparasites from other organisms. In many cases, cleaning involves a high degree of maneuverability, as cleaners on the hunt for parasites may continuously dart around the body of their clients. In labrids, at least 58 species are known to clean. Over two-thirds of these species, however, clean predominately as juveniles, exhibiting an ontogenetic shift away from cleaning as they enter adulthood. Using a phylogenetic comparative framework, we examined features of the axial skeleton, overall body shape, and pectoral fin shape in 31 species of labrids spread across four major clades to assess how scaling patterns in these systems are associated with the ontogeny of cleaning behavior. We find that across wrasses, the ontogeny of body shape shows evolutionary concordance with the degree of flexibility across the vertebral column. A key driver of this relationship is that species that shift away from cleaning over ontogeny show stronger positive allometry for body depth and vertebral moment of inertia than other taxa. Species that clean throughout their life histories show a more elongate body and vertebral column, and tend to maintain the combination of these characteristics over ontogeny. Cleaning behavior in labrid fishes is thus an excellent model with which to investigate morphological patterns as they relate to evolution, development, and ecology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app