Add like
Add dislike
Add to saved papers

Blocking miR396 increases rice yield by shaping inflorescence architecture.

Nature Plants 2015 December 22
Strategies to increase rice productivity to meet the global demand have been the main concern of breeders around the world. Although a growing number of functional genes related to crop yield have been characterized, our understanding of its associated regulatory pathways is limited. Using rice as a model, we find that blocking miR396 greatly increases grain yield by modulating development of auxiliary branches and spikelets through direct induction of the growth regulating factor 6 (OsGRF6) gene. The upregulation of OsGRF6 results in the coordinated activation of several immediate downstream biological clades, including auxin (IAA) biosynthesis, auxin response factors, and branch and spikelet development-related transcription factors. This study describes a conserved microRNA (miRNA)-dependent regulatory module that integrates inflorescence development, auxin biosynthesis and signalling pathways, and could potentially be used in engineering high-yield crop plants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app