Journal Article
Observational Study
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Left ventricular mechanical dispersion is associated with nonsustained ventricular tachycardia in hypertrophic cardiomyopathy.

Annals of Medicine 2016 September
OBJECTIVE: We assessed the value of speckle tracking two-dimensional (2D) strain echocardiography (2DSE) measured mechanical dispersion (MD) with other imaging and electrocardiographic parameters in differentiating hypertrophic cardiomyopathy (HCM) patients with and without nonsustained ventricular tachycardia (NSVT) on 24-h ambulatory ECG monitoring.

METHODS AND RESULTS: We studied 31 patients with HCM caused by the Finnish founder mutation MYBPC3-Q1061X and 20 control subjects with comprehensive 2DSE echocardiography and cardiac magnetic resonance imaging (CMRI). The presence of NSVT was assessed from ambulatory 24-h ECG monitoring. NSVT episodes were recorded in 11 (35%) patients with HCM. MD was significantly higher in HCM patients with NSVT (93 ± 41 ms) compared to HCM patients without NSVT (50 ± 18 ms, p = 0.012) and control subjects (41 ± 16 ms, p < 0.001). MD was the only variable independently associated with the presence of NSVT (OR: 1.60, 95% CI: 1.05-2.45, p = 0.030). Assessed by ROC curves, MD performed best in differentiating between HCM patients with and without NSVT (AUC = 0.81).

CONCLUSIONS: Increased mechanical dispersion was associated with NSVT in HCM patients on 24-h ambulatory ECG monitoring. Key messages The prediction of sudden cardiac death in hypertrophic cardiomyopathy remains a challenge and novel imaging methods are required to identify individuals at risk of malignant ventricular arrhythmias. Mechanical dispersion by speckle tracking echocardiography is associated with NSVT on 24-h ambulatory ECG monitoring in patients with hypertrophic cardiomyopathy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app