Add like
Add dislike
Add to saved papers

Immunogenicity of mammary tumor cells can be induced by shikonin via direct binding-interference with hnRNPA1.

Oncotarget 2016 July 13
Immunogenic cell death (ICD) of tumor cells occurs via various pathways that activate immune cell systems against cancer. Previous studies have demonstrated that shikonin (SK), a plant secondary metabolite, can confer strong pharmacological activities that activate ICD and strong immunogenicity of tumor cells. However, the exact hierarchical regulatory mechanisms including the molecular targets of SK-activated immunogenicity are still unknown. Here, the heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) was revealed to serve as a specific protein target for SK. This binding plays a key role in SK-stimulated ICD activity and the suppression of post-transcriptional mRNA processing, including nuclear export activity of newly synthesized mRNAs in mammary carcinoma cells in vitro. Moreover, it also mechanistically mediates the anti-metastatic effect of a tumor cell lysate (TCL) vaccine, which can be readily generated from SK-treated 4T1 tumor cells (SK-TCL), and the derived tumor-immunogenicity of SK-TCL-treated dendritic cells in vivo. Together, the identification of hnRNPA1 as the intracellular molecular target provides compelling pharmacology-based knowledge for the potential clinical use of SK-induced immunogenicity. In addition, SK may also serve as a potent suppressor that interferes with specific post-transcriptional activities, a mechanism which may be useful for exploitation in cancer therapeutics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app