Add like
Add dislike
Add to saved papers

High-mobility group box 1 is associated with neurological outcome in patients with post-cardiac arrest syndrome after out-of-hospital cardiac arrest.

BACKGROUND: Alarmins, including high-mobility group box 1 (HMGB-1), can be released from damaged tissues and activated cells as inflammatory mediators. We aimed to evaluate HMGB-1 and mitochondrial DNA dynamics and estimate the prognostic value for neurological outcome in patients with post-cardiac arrest syndrome after out-of-hospital cardiac arrest.

METHODS: We evaluated the dynamics of HMGB-1, mitochondrial DNA, and other variables in patients with return of spontaneous circulation after out-of-hospital cardiac arrest. Patients were divided into two groups according to the cerebral performance category at 30 days: the favourable outcome group (cerebral performance categories 1 and 2) and unfavourable group (≥3).

RESULTS: Twenty-one patients were included, and 11 demonstrated favourable outcomes. HMGB-1 levels and mitochondrial DNA on day 1 were significantly higher than on days 2, 3, 5, and 7. Plasma levels of HMGB-1 on day 1 correlated with prognostic parameters (estimated interval to return of spontaneous circulation, lactate, and NH3), tissue damage, systemic inflammation, and disease severity. HMGB-1 on day 1 in the unfavourable group was significantly higher than in the favourable group (median [interquartile range] 15.5 [6.65-18.7], 39.4 [17-69.5], P = 0.009). These findings were not observed regarding mitochondrial DNA. Regarding HMGB-1 prediction accuracy for a good neurological outcome, the area under the receiver operating characteristic curve was 0.864 (95 % confidence interval 0.702, 1.000).

CONCLUSIONS: HMGB-1 may be involved in acute-phase post-cardiac arrest syndrome pathophysiology, and an increase in plasma levels may be associated with a poor neurological outcome. The study was registered with the University Hospital Medical Information Network Clinical Trials Registry ID: UMIN000006714.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app